Frequency-shifting-based stable on-line algebraic parameter identification of linear systems

نویسندگان

  • Josip Kasac
  • Tihomir Zilic
  • Vladimir Milic
  • Andrej Jokic
چکیده

In this paper a new approach to algebraic parameter identification of the linear SISO systems is proposed. The standard approach to the algebraic parameter identification is based on the algebraic derivatives in Laplace domain as the main tool for algebraic manipulations like elimination of the initial conditions and generation of linearly independent equations. This approach leads to the unstable time-varying state-space realization of the filters for the on-line parameter estimation. In this paper, the finite difference and shift operators in combination with the frequency-shifting property of Laplace transform is applied instead of algebraic derivatives. Resulting state-space realization of the estimator filters is asymptotically stable and doesn’t require switch-of mechanism to prevent overflow of the estimator variables. The proposed method is especially suitable for applications in closed-loop on-line identification where the stable behavior of the estimators is a necessary requirement. The efficiency of the proposed algorithm is illustrated on three simulation examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Line Identification of the First Markov Parameter of Linear Multivariable Plants (RESEARCH NOTE)

In this paper three methods for on-line identification of first markov parameter at linear multivariable plants are presented. In these methods input-output data are used far the on-line identification of the first markov parameter.

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Shifting Method for Relay Feedback Identification and Control of Delayed Systems

The paper deals with identification and control of time delay stable plants. A single relay feedback test and the new method called “shifting method” are used for plant identification. For this purpose an asymmetric relay is used. This approach enables to estimate three points on a plant frequency response for three important frequencies from sustained oscillations obtained by a single relay te...

متن کامل

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems

In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017